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Abstract—In some cases, optimal structural design corresponds to non-analytical points for which the first
variation of volume or cost does not necessarily vanish. Such cases may occur, for instance, when optimal
design is aimed at maximizing the lowest eigenvalue (natural frequency, buckling load) and a multimodal
solution occurs, or when the aim is to minimize the maximum stress intensity. The present paper discusses
such cases and provides the relevant optimality conditions.

1. INTRODUCTION

In a recent paper[1], Olhoff and Rasmussen have discussed the significance of multiple
eigenvalues in connection with the optimal design of structural members with eigenvalue
constraints. They have shown, for example, that the optimal design of unconstrained clamped
columns occurs when the smallest two buckling loads coalesce and that, as a result, the
classical solution of Tadjbaksh and Keller[2] based on a single eigenvalue is invalid. Corre-
sponding observations have subsequently been made by Szelag and Mréz[3], who considered
optimal design of vibrating beams with unspecified a priori support action and who found that
both analytical extremum points and multimodal points may occur for optimal solutions.

The present note is intended to throw additional light on the nature of the results of [1] and
[3] and to derive optimality conditions on the basis of a more general, and perhaps more
instructive approach. In addition, the design for local stress constraint is discussed and
sufficient optimality conditions are derived. These conditions are a typical feature of min-max
or max-min problems, and their investigation is therefore an indispensable feature in the
solution of such problems.

The existence of non-stationary optima, away from the boundary of an admissible domain,
can easily be demonstrated by a simple example. Let the numbers x; (i = 1,2, . .. n) be subject to
the constraint Zx; = 1, and find the set x; = xq; such that (x;)max becomes as small as possible.
The solution xo; = 1/n (i = 1,2,... n) is obvious, as is the proof of optimality, which, however,
does not involve stationarity. As an illustration, a mass particle may be attached to two
mutually perpendicular spring systems with spring constants k; and k,, respectively. Then, for
prescribed total “cost” k =k, + k, the fundamental frequency in the plane of the springs is
maximized if k; = k, = k/2, and for the corresponding problem in three dimensions the optimal
solution is given by k;=k,=k;=k/3. in both cases the solution involves multiple
eigenvalues[12].

The situation is similar if IIx, is prescribed. For example, an unbraced prismatic column of
rectangular cross section, whose total area is prescribed, is obviously strongest if that cross
section is square (assuming suitable boundary conditions). In fact, engineers have long accepted
the general, though not infallible, principle that optimal design involves simultaneous failure
into several modes.

+This paper is based on work carried out while the first author was a guest of the Polish Academy of Sciences under the
auspices of an exchange program with the U.S. National Academy of Sciences. The work of the second author was supported
through the Maria Sk}odowska-Curie Fund.
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The concept may readily be extended to continua. Let y(x) be an integrable function, whose
supremum is to be minimized on the segment (0, I) subject to the constraint f¢ y(x) dx = 1; this
leads once again to the non-stationary solution y = yo= 1/I. In fact, considering any function
y(x) = 1/ + cp(x), with f§ ndx =0, and denoting sub n(x)=a >0, inf n(x)=-8 <0, then
I(y)=sup y(x) = 1/l + ca > 1/l for ¢ >0 and I(y) = 1/l — ¢f > 1/l for ¢ >0, and hence di/d|c|>
0 as ¢ -0 irrespective of whether the limit is approached from above or from below. An
example of this type of non-stationary optimality is presented in Section 4.

2. OPTIMAL DESIGN FOR MULTIPLE EIGENVALUES IN CONSERVATIVE SYSTEMS
Consider the problem of optimal design of a beam or plate with specified in-plane forces,
loading, and boundary conditions. The design variable a(x) represents a cross-sectional
property such as a varying beam width or height, or the sheet thickness of a sandwich plate.
Consider the typical problem of maximizing the eigenvalue A,, which is governed by the system of
differential equations and boundary conditions

Lu,-—A,~Gu,~:0 (121,2,) “)

and subject to the condition of prescribed upper bound on volume of cost
Csz(a)dxgco. @)

In eqn (1) L(«) and G(a) are linear, self-adjoint, positive definite operators in the eigenfunction
u;(x), and algebraic functions of the design variable a, while the eigenfunctions u; are
normalized in the sense of

(uiv Gui)= l (3)

We also note that the self-adjointness of the operators implies the existence of scalar functions
U and H, quadratic in u, such that

(u, Lu)=fU(u) dx
’ (4)
(1, Gu) = f H(u)dx

in which the integration extends over the region t of the body. '
Consider now a “‘neighboring” design a + a (associated with u; + 14, and A, + A;): then, by
varying eqn (1), we obtain

Li; — A,Giy; = —[aL,]u; + A; [¢G. ]u; + A, Gu, (5)

in which dots denote first variations and a subscript « denotes differentiation with respect to a.
An explicit expression for A; is obtained by comparing eqns (1) and (5) after taking the inner
product with 4, and u;, respectively. In view of eqn (3) we obtain

Xi = (u, [¢L,]u,) — Ai(w;, [aGalu;)
- [ (Vw0 - AH, @)1 dx ©)

in which we have again used the self-adjointness of the operators L and G and their derivatives
with respect to a.

The technically most significant problem is to maximize the lowest eigenvalue A,. In this
case there are two possibilities:

(1) A maximum occurs when the lowest eigenvalue A, >0 is single and the associated
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eigenfunction u,(x) is unique (except for the sign). Prior to the publication of [1] all authors
appear to have concerned themselves primarily with this case, at least by implication.

(2) The lowest eigenvalue represents a multiple—say, double— root, to which correspond
two linearly independent eigenmodes u, and u,. This second case, which has received very little
attention in the literature, is the main subject of this section.

Optimality criteria for the first case were derived, e.g. in Refs. [1, 2], in which the
stationarity condition

A=0 vl
for all a(x) satisfying
f A dx=0 @®)
was shown to take the form
Py = U,(u) - A Ho(u) - B°A, =0, (xE7). 9

The conditions for global maximum of A; are analogous to those derived in [4], where the
minimum cost design was considered for specified first frequency of free vibrations. It was
shown that if L and G are negative definite with respect to a, then the structure attains its
minimum cost at the stationary point, for which (9) is satisfied. Associated with this global
optimum is the local maximality condition (for constant volume)

Xi= f [Usa(0) = At Hoalw) — B2 Ana) 62 dx

-2 (UG~ A Hein) dx <0, (10)
for which a sufficient condition is
Uaa(ul)_/\lHaa(ul)_Bleaa <0’ (XET) (]1)

since the second integral in (10) is positive in view of Rayleigh’s principle and of the fact that #,
is a kinematically admissible field. The sufficiency condition (11) for the local maximum of A, is
in accord with the results of [4].

The condition of optimality for the second case of coincident eigenvalues A; and A, is less
restrictive. Although it is of course still possible for both A; and A, to be stationary (see eqns 9
and 11), a local optimum may now also exist without either eigenvalue being stationary. In fact
we may assume that for some variation a(x) neither A; nor A, vanishes: then it is sufficient to
postulate further that A, and A, be of opposite sign. In that case the neighboring design a + « is
associated with two distinct eigenvalues A, + A, and A, + A,, the smaller of which is less than
A1 = Ay, and a local non-stationary optimum is therefore reached (see Fig. 1).

Let the point of coincidence be identified by

A|=A2=A (12)

and let it be associated with the two independent modes u, and u,, respectively. (Note: the
subscripts do not necessarily refer to the ordering of the eigenvalues by their magnitudes near
the point of coincidence.) Then, according to the discussion above, a local optimum is reached
if

AA=0 (13)

for any a(x) satisfying eqn (8). Equivalent to inequality (13) (for A, # 0), but easier to handle is

&=LP2ddx
A fPlddx

A

0 (14
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Fig. 1. Intersecting surfaces.

in which P, and P, are defined in eqn (9) (the latter by exchanging subscripts). If we let
Py(x)= P(x) and define f(x) by

Py(x) = f(x) P(x), (15)
then (14) becomes
Jde dx
=0, (16)
fPa dx

which must be satisfied for all variations a(x).
The establishment of the necessary and sufficient conditions to satisfy (16) follows
standard arguments of the calculus of variations. In fact, let
a(x) = 8(x — xy), (17
in which 8§ represents the Dirac function: then, for P(x;) # 0, (16) implies

fi=flx)=0. (18)

Since x, is arbitrary this means that f must be nonpositive throughout the region.
Similarly, for

o't(x)=a,8(x—x|)+ azs(x—XZ) “9)

the condition (16) assumes the form

f a1P(x;) + ra;P(xy)
"a,P(x;) + @2 P(xy)

=0

0
r=filf
for any value of a; and a,. Moreover, if we define, for P(x;) # 0,
(x)= P (x) 21)

- a, P(xy)

and invoke (18), then (20) is reduced to
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%’f 20, (g€ -, ). (22)

It is easy to show that for any value of r# 1 it is always possible to find a value of g such that
(22) is violated. It therefore follows that r = 1 is a necessary condition for (14) to be satisfied, or
equivalently,

_PByx) _
flx)= B0~ w’, (x€1) (23)

The sufficiency of eqn (23) is readily verified by substitution in eqn (16).t

It is interesting to note, as a perhaps not surprising by-product of eqn (23), that the ratio of
X2 to A, is the same for all (not trivially vanishing) variations ¢ which do not follow the *‘edge”
between the “‘surfaces” identifying A(a) and Ax(«) (see Fig. 1). If, on the other hand, both
A,=1,=0 for some variation &, then this variation is tangent to the edge identified by
Ai(a) = Ay(a), and in that case eqn (10), with eqn (11) as a sufficient condition, must hold for
both A, and A,.

After rearrangements of the constants eqn (23) can be put into the standard form

(1= V) [(Us(u) = AHo (u)] + ¥[Uq(up) - AHa(w)) = B*A,  (x€r1, yEOQ, 1) (24

which corresponds to eqn (13) in [1] for the unconstrained case. The problem treated in [1]
concerns the buckling of a column of prescribed shape (say, circular), but not size of the cross
section. In nondimensional form the relevant operators and quadratic forms are

Lu, =(a’u?)" (x€0,1); w=u,=0 (x=0,1)
Gu,=-u, (x€0,1) Afla)=a (25)

Uw)=ca’u”  H(u)=u"

(with primes denoting derivatives with respect to x), and the optimality condition eqn (24) takes
the simple form

2a(1 - y)u + 2ayu? = g2 x€0,1;y€0,1). (26)

This is identical with the result of [1]. The latter was derived through a variational process
covering the stationary case of all variations a which follow the intersecting ‘“curve” A, = A,.
The additional restriction ve(0, 1) (see eqn (24)) completes the coverage by extending it to the
non-stationary case in which & contains a component orthogonal to the intersection.

3. FLUTTER

The developments of the previous section can readily be extended to nonconservative
problems, in which multiple modes, with nonstationary properties, may also occur in addition to
stationary single modes. As an example we select the case of the optimal design of a structure
under non-conservative loading conditions—say, a column subjected to a follower force—
whose stationary analysis was carried out by Vepa[S] and by Odeh and Tadjbakhsh[6], while
Claudon[7] has recently performed a numerical investigation of the case of a double root.

It is well known, as a result of the work of Ziegler ef al.[8], that the stability of a structure
under these conditions must be analyzed on a dynamic basis. Letting the response function
U(x, t) be of the form

U(x, 1) = u(x) e 1))

we reduce the problem to the solution of

Lu—-AGu=o’Mu=0 (28)

tEquation (23) can also be shown to be directly derivable by means of a lemma on p. 13 of [13]. The authors are indebted to
one of the referees for bringing this lemma to their attention.
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in which, for the example selected, L and M are positive definite self adjoint linear operators in
u. Equivalent to eqn (28) is

Lv-AG'p~ o*Mv =0, (29)

where G” is adjoint to G. Without loss of generality it is convenient to normalize u and v in the
sense that (v, Gu) = (u, GTv) = 1. We also note, for future reference, that

(u,Lv)=(v,Lu)= f U(u, v) dx
(u, Mv) = (v, Mu) = f K(u, v)dx (30)

in which U and K are bilinear in u and v and may be identified with the strain energy and
kinetic energy densities, respectively. If G = G” then ? is real for all values of A. The structure
is stable when w;*>>0, unstable when w,><0, and the critical (““divergence”) state is reached
when o, = 0. This case is readily seen to be covered by the discussion of the previous section.

If G # G7, that is, if the problem is nonconservative, the structure is stable if the smallest
two roots (w})? and (w?)’ are real, distinct, and positive. In the nonconservative case, however.
instability may also occur when (w{)* and (%)’ become complex conjugate. The critical state
(“flutter’”) corresponds to the double root (w})’ = (@])* = w,>> 0.

The analytical condition governing the onset of flutter can be established by considering u
and A, to be functions of w” By differentiating eqn (28) with respect to w?, with asterisks
denoting derivatives, we obtain

Lu* - AGu* - w’Mu* = A*Gu + Mu. (31)

At the point at which w; and ] coalesce, A* satisfies
A¥=0 (32)
since this corresponds to the largest value of A for which two real, though coincident, roots
(0})* and (w?)* exist. Thus a comparison of eqns (29) and (31), by applying the inner product

with u* to the former and with v to the latter, and consideration of eqns (32) and (30), lead to
the flutter condition

f K(u,v)dx =0, (33)

which was previously established by Plaut{9] for a more restricted class of problems. The onset
of dynamic instability is therefore governed by eqns (28) and (29) and the flutter condition eqn
(33).

For optimization let L and M be functions of a. In analogy with the previous section we now
obtain, by varying eqn (28) with respect to a.

Li- AGu— o™i = —[a¢L,Ju+ AGu+ (6)Mu + 0}aM,]u, (34)

and if we take the inner product of this equation with v, and of eqn (29) with u, and by invoking
eqn (33), we establish

X= f (U, (0. v)— K, (u, V)]a dx. (35)

An optimum is reached once again when eqn (7) is satisfied for all variations a satisfying eqn
(8); this leads to the condition of stationarity

U.(u,v)— 0’K,(u,v)= B*A, (x€1) (36)
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which was obtained, in more restrictive form, by Vepa[5], who investigated the problem of the
optimal design of a cantilever column subject to a follower force.

Claudon[7] has noted that the solution given in {5] does not represent an optimum for the
problem considered. Instead, the optimum condition occurs when the same eigenvalue A is
reached for two separate double roots @,? and w,’, as any change in the design corresponds to
an increase in one of the eigenvalues and a decrease in the other. His results are predominantly
numerical.

Analytically this corresponds once again to satisfying eqns (12) and (13), in which A, and A,
are the values of A associated with the double roots w;” and ,’, respectively. Application of a
process entirely analogous to that of the previous section then leads to the optimality condition

(1= YUy uy, vi) = 0 Ko (uy, v)] + [ Us(uz, v2) — @Ko (w2, v2)] = B2A,
xer.yeo,l) (37

which corresponds to eqn (24) for the case of divergence. For the particular case treated, which
is similar to the conservative case treated in [1], but with boundary conditions making the
operator G non-selfadjoint, the optimality condition eqn (37) reduces to

(1- y)Qauiv] — wluv) + yQausvs - 0'uv) = g2 (x€0,1), (38)

from which eqn (26) can be recovered by setting 4, = vy, ;= v, and w, = w, = 0.

A comparison between the numerical results obtained by Claudon(7] and eqn (38) is
inconclusive. The results clearly show that the stationarity condition eqn (36) is invalid. Some
qualitative agreement with the nonstationary condition eqn (37) (or eqn 38) is discernible:
nevertheless there is sufficient quantitative disagreement to raise some doubt as to the exact
optimality of the results published in [7]. Since the computational technique employed in [7] is
otherwise accurate and efficient it is possible that the discrepancy may be due to excessive
sensitivity. Further studies along these lines are certainly in order and recommended.

4. DESIGN UNDER MAXIMUM STRESS INTENSITY CONSTRAINT

One of the most common problems in engineering is to determine the best design of a
structure or of a machine element on the basis that, for given maximum stress intensity, its cost
is to be reduced to a minimum, or, equivalently, that the maximum stress intensity is to be as
small as possible for given cost. In this case the constraint is local, for given global objective
function (or vice versa), whereas in the previous two sections both objective function and
constraint are global. Nevertheless, it is shown in this section that for a broad class of problems
it is possible to find an optimum: this optimum, however, is once again not stationary.

For this purpose it is useful to introduce the generalized stress m, which may represent a
bending moment in the case of a beam, or a bending moment tensor in the case of a plate, or
any other system of generalized internal stresses which are associated with a corresponding
system of strains k. The total complementary energy E. is given by

E, = f U.(m, a) dx, (39)

in which U,, the complementary energy density, is assumed to depend on the design parameter
a, and the integral extends over the body as before. The stress m and strain  are connected
through the constitutive relations

aU,
=—= 40
k== (40)
We also note, as pointed out in [10], that the stress intensity, ()., that is, the average
complementary energy density in the extreme fibers, is given by
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U,
da aU,
L=t 9 41
A dA
da

If we now pose the preliminary problem of minimizing E. for given volume or cost function,
then, from eqns (39) and (8),

L [ (3UN" . U,  ,0A\ ., R
EC—L(am) mdx+£(aa 8 aa)adx—O. (42)

The first integral in this equation vanishes from the principle of virtual work because, by eqn
(40), it represents the internal work of a compatible strain field relative to a self-equilibrated
stress field. It therefore follows that eqn (42) is satisfied for arbitrary design variations « if, and only
if,

Q=g (x€1), (43)

in which the definition of eqn (41) has been invoked. It is noted that eqn (43) represents the
necessary condition for the complementary energy. or. equivalently, the total compliance. to
become stationary.

In a great number of technically significant problems the strain energy density U, is of the
form

U.m, A) = %f(m) (n>0). (44)

For example, n =1 may represent the case of a bar under tension or compression, of a
sandwich beam or plate, or of a closed thin-walled section of given profile but varying thickness
under torsion. Rectangular beams of given width and varying depth, or solid plates of varying
depth, are represented by the case of n = 3.

By eqns (39), (41) and (44), E. can then be expressed as

E.= % f 0.A dx. (45)
Let a design a satisfy eqn (43): then, by eqn (45), eqn (42) becomes
nE, = f O Adc+ + f 0.4 dx = 0. (46)

The second integral in this equation vanishes by eqns (8) and (43), and the first integral
therefore vanishes also. Since A is nowhere negative, and excluding the trivial case in which Q.
vanishes everywhere except at points of vanishing cross sections, it therefore follows that €,
cannot everywhere be negative or zero, or, equivalently, that

(Q)max > 0. 47

We can therefore draw the conclusion that for any other design a*=a +a, Q¥=0Q+Q.*...,
and within the linear approximation employed here,

() max > B°. (48)

In other words, for any other design the safety factor is reduced. Equivalently, let an alternate
design retain the same safety factor, that is, let

O*=p (49)
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This implies that Q. cannot be positive, and, in view of eqn (43), and employing the same
reasoning as before, it follows from eqn (46) that

fAdx>m (50)

an alternate design employing the same safety factor must therefore cost more.

Consider finally an alternate design with the same (or larger) safety factor and the same
cost, i.e. let eqns (8) and (49) both be satisfied. Then, from eqn (46), E. <0, and eqn (42) is
therefore violated. Since, in view of eqn (43), the second integral still vanishes, it follows that
the first integral in eqn (42) must be negative.

We now assume that the external force system is identified by AFy, in which F, is a given
force system and A represents a common multiplier, which may be assumed, without loss of
generality, to be positive. Let u represent the actual displacement field; then (42) must be
replaced by

Ec=fmrkdx=XfFoTudx<0, 1))

in which we have once again invoked the principle of virtual work since the strain field x is
compatible with the displacement field u, and the stress field m is in equilibrium with the force
system AF,. The integral on the right side of eqn (51) is positive since, when multiplied by A, it
represents the total external work and is therefore equal to 2E.. It follows therefore that

X <0, (52)

which states that an alternate design of the same cost and safety factor carries a reduced load.

In any event, any interpretation leads to the conclusion that a design satisfying eqn (43),
subject to the restriction of eqn (44), constitutes a local optimum in the sense that the situation
becomes less favorable, within a linear approximation, if any change in the design is introduced.
We are therefore once again dealing with a nonstationary condition of optimality; a similar
conclusion, though on a restricted basis, was reached in [10].

5. CONCLUDING REMARKS

The equations developed in Sections 2 and 3, and notably optimality conditions of the type
of eqns (24) or (26), have appeared in the literature before, and in connection with diverse
problems. For example, Prager and Shield[11] have shown that under certain restrictive
conditions equations of the type of eqn (26) may represent a sufficiency condition for optimality
under dual constraints. It may also be noted that in the theory of perfect plasticity the strain
rate vector is normal to the yield surface, and if that surface exhibits a corner then the strain
rate vector lies in a plane region which is identified and bounded, as in egn (24), by a constant y
between zero and unity.

The analogy between the results of Sections 2 and 3 and the theory of perfect plasticity is
not as far-fetched as it may seem. Let eqn (24) be multiplied by «(x) and integrated over the
region: then, by eqns (6) and (8),

(=X +yX,=0  (y€0,1) (53)

which shows, once again, that A and Az have opposite signs (unless they both vanish). Equation (7),
or eqn (53), admit the following geometric interpretation:

Let N represent the normal to the “surface” identifying A as a function of a(x), that is, let
N be orthogonal to the “tangent plane” formed by a totality of all A. Then, for a single surface,
the stationary condition A = 0 (eqn (7)) obviously implies that N is “vertical”, that is, paraliel to
the A axis in Fig. 1. On the other hand, if the optimal point lies on the intersection between two
surfaces associated with A, and A,, with normals N; and N, not both parallel to the A axis, then
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there must exist a “vertical” normal N such that
N:(l“’y)N1+’yN2. (54)

The plane identified by eqn (53) (not shown in Fig. 1) then is normal to N and hence
“horizontal”. The same discussion can easily be extended to intersections of higher order.
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